Subject Summary
This course can be read by any Part IB scientist, physical or biological, who wishes to pursue the study of biological processes at the molecular and cellular level. It builds on basic concepts discussed in the Part IA course 'Biology of Cells'. The aims of the course are to describe how information is stored as DNA and expressed as specific proteins, how enzymes and other proteins exert their functions, how cells function as integrated and co-ordinated metabolic systems, and how the growth and differentiation of cells is controlled.
The first term is concerned with Molecular Biochemistry: genes and proteins in action. The three main themes are firstly gene cloning and manipulation, secondly the control of gene expression in prokaryotes and eukaryotes, and finally the structure of proteins, the molecular mechanisms of enzyme action and the manipulation of protein structure to modify function.
The second term builds on these basic molecular concepts to deal with Cell Biochemistry: properties and functions of membranes and organelles and the integration of metabolism. The first topic is bioenergetics (how cells obtain their energy supply on which all metabolism is based), which is followed by a discussion of the mechanisms by which metabolism is controlled and integrated. The hormonal control of metabolism and mechanisms of signal transduction across the cell membrane lead on naturally at the end of the term to a discussion of the control of eukaryotic cell proliferation and how signalling pathways in mammalian cells are activated by growth factors. This topic is continued with a discussion of 'cancer genes' (oncogenes and tumour suppressor genes) and how the control of the cell cycle may be subverted in the development of tumours.
The third term covers the diversity of eukaryotic organisms and how protists break the rules of biochemistry, and also delves into the molecular mechanisms that underpin bacterial chemotaxis.
Practical work is designed to complement the lectures. It involves experiments and integrated discussion sessions, the use of computers in the analysis of DNA and protein sequences and in the simulation of metabolic control, and journal clubs where small groups are guided by a senior scientist in the interpretation of a recent scientific paper.
Programme Specification
This course is taught by the Department of Biochemistry.
Aims
To build on the Part IA Biology of Cells course, providing an advanced foundation for specialist further study of Biochemistry or other molecular biosciences in:
- the structural organisation of genes and the control of gene expression in prokaryotes and eukaryotes;
- protein structure, enzyme catalysis and protein engineering;
- the control of metabolic pathways, energy transduction and cell growth;
- the methods used to analyse biochemical structures and processes;
- the implementation of experimental protocols, use of laboratory equipment and of software to analyse molecular structure and sequences;
- the principles that underlie experimental design.
Learning outcomes
At the end of the course students should have knowledge and understanding of:
- recombinant DNA technology; chromatin structure, gene expression;
- protein structure and folding, conformational mobility and stability, principles of enzyme kinetics, enzyme mechanisms, allostery and antibody recognition and protein design;
- structural basis and mechanism of energy transduction in organelles and organisms, and of the control of metabolic flux;
- the control of eukaryotic cell cycle; the principal mechanisms by which oncogenes and tumour suppressor genes perturb normal cell proliferation;
- signal transduction across membranes and within and between cells;
- understanding diversity of the eukaryotic cell;
- the mechanisms of chemotaxis in bacteria;
- the analysis and critical interpretation of the results of biochemical experiments using examples from their own laboratory practice, journal clubs and lectures.
Teaching and Learning Methods
These include lectures, practical classes and discussions, computer applications, journal clubs, experimental design sessions, online quizzes and materials, and supervisions.
Assessment
Assessment for this course is through:
- one unseen written examination based on the content of the lecture courses (for aim 1 and learning outcomes 1-8);
- one unseen written examination based on the content of the lectures (1/3) and the practical work conducted throughout the year (2/3), and drawing on the background given in lectures (for aim 1 and learning outcomes 1-8);
- satisfactory completion of the practical course.
Courses of Preparation
Essential: NST Part IA Biology of Cells.
Recommended: Knowledge of A-level Chemistry is assumed.
Additional Information
Further information is available on the Course Websites pages.